Zebrafish calls for reinterpretation for the roles of P/Q calcium channels in neuromuscular transmission.
نویسندگان
چکیده
A long-held tenet of neuromuscular transmission is that calcium-dependent neurotransmitter release is mediated by N-type calcium channels in frog but P/Q-type channels in mammals. The N-type assignment in frog is based principally on pharmacological sensitivity to ω-conotoxin GVIA. Our studies show that zebrafish neuromuscular transmission is also sensitive to ω-conotoxin GVIA. However, positional cloning of a mutant line with compromised neuromuscular function identified a mutation in a P/Q- rather than N-type channel. Cloning and heterologous expression of this P/Q-type channel confirmed a block by ω-conotoxin GVIA raising the likelihood that all vertebrates, including frog, use the P/Q-type calcium channel for neuromuscular transmission. In addition, our P/Q defective mutant line offered a means of testing the ability of roscovitine, known to potentiate frog neuromuscular transmission, to mediate behavioral and functional rescue. Acute treatment led to rapid improvement of both, pointing to potential therapeutic benefit for myasthenic disorders involving calcium channel dysfunction.
منابع مشابه
Synchronous and asynchronous modes of synaptic transmission utilize different calcium sources
Asynchronous transmission plays a prominent role at certain synapses but lacks the mechanistic insights of its synchronous counterpart. The current view posits that triggering of asynchronous release during repetitive stimulation involves expansion of the same calcium domains underlying synchronous transmission. In this study, live imaging and paired patch clamp recording at the zebrafish neuro...
متن کاملUpregulation of L-type calcium channels in colonic inhibitory motoneurons of P/Q-type calcium channel-deficient mice.
Enteric inhibitory motoneurons use nitric oxide and a purine neurotransmitter to relax gastrointestinal smooth muscle. Enteric P/Q-type Ca2+ channels contribute to excitatory neuromuscular transmission; their contribution to inhibitory transmission is less clear. We used the colon from tottering mice (tg/tg, loss of function mutation in the α1A pore-forming subunit of P/Q-type Ca2+ channels) to...
متن کاملThe effects of eight weeks resistance training on α -1A protein of pre-synaptic P-Q-type calcium channels in FHL and soleus muscles of rats
The purpose of this study was to investigate the effects of 8 weeks resistance training (RT) on α -1A protein of pre-synaptic P-Q-type Calcium Channels in FHL and soleus muscles of rats. 16 male wistar rats provided from razi institute, randomly divided to 2 groups (Control-Sham; n=8 and Resistance Training; n= 8). Training group conducted 8 weeks (5 session/week) resistance program on spe...
متن کاملFunctional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal.
Calcium channels of the P/Q subtype mediate transmitter release at the neuromuscular junction and at many central synapses, such as the calyx of Held. Transgenic mice in which alpha1A channels are ablated provide a powerful tool with which to test compensatory mechanisms at the synapse and to explore mechanisms of presynaptic regulation associated with expression of P/Q channels. Using the caly...
متن کاملVoltage-dependent P/Q-type calcium channels at the frog neuromuscular junction.
It is well known that antagonists of N-type voltage-gated calcium channels inhibit the evoked quantal release of acetylcholine in amphibian neuromuscular synapses. This, however, does not exclude the functional expression of other types of voltage-gated calcium channels in these nerve terminals. Using immunocytochemistry, we detected the expression of the alpha1A subunit of P/Q-type calcium cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 17 شماره
صفحات -
تاریخ انتشار 2013